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ABSTRACT: A mix tu re  consisting of n homogeneous  phases having  

cer ta in  propert ies is considered.  The g e o m e t r y  of the phase domains  

is arbitrary and the mix tu re  as a whole  is considered to be s t a t i s t i ca l ly  

homogeneous  but gene ra l ly  anisotropic.  Ideal  condi t ions of t he rma l  

con tac t  (a continuous t empera tu re  and t he rma l  flux) at the phase bound- 
ary are assumed. A va r i a t iona l  method is used to find both the upper 

and lower bounds of the e f fec t ive  t h e r m a l - c o n d u c t i v i t y  coeff ic ients  

of the mix tu r e  for g iven  concent ra t ions  and the t h e r m a l - c o n d u c t i v i t y  

coeff ic ients  of the ind iv idua l  phases. 

1. Let us consider some vo lume V of a mix tu re  bounded by the 

surface S. Since  the phases have  different  t he rma l  conduct iv i t ies ,  i t  

follows that ,  in the case of a s teady the rmal  flux, the tempera ture  

gradient  f ields r and the the rmal  flux vectors f are mic roscop ica l ly  

inhomogeneous  for any g iven  t empera tu re  at  S. The  tensor K of the 

macroscopic  (ef fec t ive)  t h e r m a l - c o n d u c t i v i t y  coeff ic ients  of the m i x -  
ture can be def ined as follows: 

-- <f> = K <,>, (i. 1) 

where the angle  brackets  denote  averaging  over the vo lume.  We also 

assume that  the vo lume  over which the m e a n  values  are ca l cu l a t ed  is 

the "cha rac t e r i s t i c  macroscop ic  volume" [1] of the mix ture .  

Let us suppose that  the r - th  phase w h h  the tensor of h e a t - c o n d u c -  

t iv i ty  coeff ic ients  Kr occupies  the vo lume Vr in the to ta l  vo lume V 

of the mul t iphase  m e d i u m .  Further, l e t  the t empera tu re  (9(S) be  spec-  
ified on S in such a way that  

0 (S) = ~0z i .  (1.2)  

Here x i are the Car tes ian  coordinates  of the surface S; the r] do 

not depend on the  coordinates .  In this case T ~ = <r> in the vo lume V 
of the mix tu re .  Let us denote ,  by r* ,  the grad ien t  which results from the 

continuous t empera tu re  f ie ld  sat isfying the boundary condit ions on S 

and, by f* the t he rma l - f l ux  vector  satisfying the equat ion div f* = 0. 
For the boundary -va lue  problem,  without  boundary condi t ion  (1.2) ,  

we have  the inequa l i t i e s  

T*Kr'~* dV r . (1. 3) 
G J 

These inequa l i t i e s  follow from the ex i s t ence  of the potent ia ls  

@ : 1/2"TK~, T = :/2 f R f  

( - - h  = O@ / O-q, - - ' h  = O~ / Ot{, B = K-*) 

and from the pos i t ive -def in i t eness  of the ma t r i ces  of coeff ic ients  K 
and R. The symbol  s in inequa l i t i es  (1.3)  denotes summat ion  over 
a l l  r from 1 to n, 

1 <@>:-V-I~)dV:V~<~>K<T>, R r : K r  -1 (1.4)  
v 

2. As in the theory of e l a s t i c i ty  [2], the above problem of de-  

t e rmin ing  the m e a n  g rad ien t  of the t empera tu re  f ie ld  in the mix tu re  

can  be formula ted  as a problem for some "comparison" m a t e r i a l  L0with 

arb i t ra r i ly  chosen properties.  It is convenient ,  a t  this point,  to intro-  
duce  the "polar ized"  t he rma l - f l ux  vector  q by means  of the formula 

- - f  = K o ~ - - R  ( 2 . 1 )  

Here K o is the tensor of the t h e r m a l - c o n d u c t i v i t y  coef f ic ien ts  of 

the m a t e r i a l  L 0. S ince  div f = 0, the t empera tu re  f ie ld  in the m a t e r i a l  
L0 is the same as one in the mix ture ,  if  hea t  sources of intensi ty  div q 

q act  throughout the vo lume V in L0, where q is def ined by the re la t ion  

- -  q = ( K  - -  Ko)* (2 ,  2) 

Spec i f i ca l ly ,  an appropriate  hea t - source  layer  must  be introduced 

at  each discont inui ty  surface in the mixture ;  the intensi ty of this source 

per unit  area is de te rmined  by the magn i tude  of the jump of the loca l  
"source" q. 

Let q* be an arbitrary polar ized  f ie ld  which approximates  the true 

f ie ld .  The gradient  r* of the continuous t empera tu re  f ie ld  sat isfying 

the condit ions at S can  be chosen in the form of the tempera ture  gra- 

d ient  i:~the ma te r i a l  L 0 with distr ibuted heat  sources of intensi ty div 

q* and with appropriate  layers  of sources on the discont inui ty  surfaces 

of q* .  The t he rma l - f l ux  vector  f* chosen in the form --f* = Kor* -- q* 

satisfies the equa t ion  div f* = 0. The resul t ing f ields ('an be used in 

inequal i t ies  (1 .3) .  However,  the f inal  result  depends on the chosen 
q*.  Let us take  q* in the form of a p iecewise -homogeneous  f ield which 
assumes the constant  va lue  

- -  q* = ( K  - -  K o) % * >  ( 2 . 3 )  

in Vr. 
Here <%*> is the approx imat ing  f ie ld  r*  averaged over V r. The 

vector  f* now becomes  

- -  f* = K r <'rr*> @ Ko~ r" in Vr, ( 2 . 4 )  

where %' = '~* - -  <nor* > is the dev ia t ion  of the grad ien t  r* from the 

average  values  in V r. 

Making use of the s e l f - ev iden t  equa t ion  i f*(<'r> - -  '0 dV = 0 
v 

and expression (2.4) ,  we can reduce  inequa l i t i es  (1.3)  to 

K r < T r * > V r - - ~  f * r ' ( K o - - K r )  Tr'dVr 2 V -.< <*> 

v r 

2 < @ > V > ~ E < r } K  r<'rr*}V r @  

�9 4- E I " ~ r ' K ~ 1 7 6  Rr)  K~  " (2 .5)  
V r 

We now def ine  the d iva len t  tensor H r associated with the approxi-  
m a t e  fields <%*>, as follows: 

<xr*> = H r <T>, ( E % H i j  ~ = 6ij , % : V r / 1') 
(2.6)  

Next, we def ine  the tensor K* as the weighted  m e a n  tensor 

K* = Ecr K r H  r . (2 .7)  

Inequal i t ies  (2 .5)  now imp ly  the fol lowing theorem:  if the ma t r ix  

K 0 - K r is pos i t i ve - (nega t i ve - )de f l n l t e  for a l l  r, the ma t r ix  K* -- K 
is pos i t ive-  (nega t ive - )de f in i t e .  

3. Let us construct the approximat ing  f ie ld  r" .  The gradient  r*  

consists of the f ield r q  genera ted  d i rec t ly  by the heat  ~ourees dis t r i -  

buted in the m a t e r i a l  L 0 and of the grad ien t  r s of the tempera ture  
f ie ld  sat isfying the boundary condi t ions at S. If Gqi ' i [ s  the temper -  

ature at the point  r due to the source at the point r ' ,  Tq is the gradient  
of tile t empera tu re  f ie ld  

Ov (r) dV. 
~2 v 

Here dg~ k is an e l e m e n t  of the d iscont inui ty  surface ~, and [qi;'{] is 

the di f ference between the values of q~ on passage through the dis- 

cont inui ty  surface f?. Transforming the surface in tegra l  into a volume 
in tegra l ,  we obtain 

( OO 

Let the phases const i tut ing the mix tu re  be  isotropie.; i . e . ,  l e t  
K[j - krSi], if ma te r i a l  L 0 is homogeneous and isotropic, 

t t 
G =  

4alto i r - - r ' [  

2 2 3  



In this case, 

O0 q 1 , r 
- -  - -  ~ = �9 ~ ( 8 . 1 )  ~i*- -  0z i 4- *~ "g/o ~% r 4- i 

ttere q[~ denotes the constant value which the vector q~ assumes 

in Vr, 

1 ~ dVr 
(p' (r) = --  ~ ,i -~ r - -  r" I ' ( V~-~pr = firm inside Vm) (3.2) 

The gradient r s is homogeneous by virtue of the special boundary 
conditions (1.2) and must be determined later.  

4. Let the mixture be statistically isotropic; i. e . ,  let Kij = kSij. 
In this case, the mean  value <r ~jr>,n of the quantity ~o~j over the 
volume V m must be an isotropic divalent tensor, which, with allow- 

ance for (3.2),  can be written as 

<cO' I ~j > ,~ = V.~6,.~ 6 o (4.1) 

Averaging expression (3.1) over the volume of each phase V r and 
recalling (4.1) and (2.3),  we obtain n equations for determining 

l 1 <~,> _ _  r , s =  (4.2) ,. = :sk0 q + 5To ( k  - k 0) %*>  4- ,~  

Solving (4.2) for <%*>, we obtain 

3ko 
<It* ) = a r T ~  , a r -  k r 4 - 2 k  ~ . (4.3) 

Substituting (4.3) into the relation <T> = s c r <'rr*>, we obtain v s, 

T s = (s <'r>. (4.4) 

Determining H r from (4.3),  (4.4) ,  and (2.6),  we finally obtain 

the following equation from (2.7):  

k* ~ 2.Crkra r (ZCrar)-L (4. 5) 

The bounds for k can be determined as follows. Let the largest and 
smallest of the phase thermal-conduct ivi ty  coefficients kr be k a and 
k 8. Then, in accordance with the theorem of Section 2, the best upper 
bound is obtainable by setting k 0 = k a and the best lower bound is 
obtainable by setting k 0 = k g. The bounds f o r k  can be expressed as 

tee r (2k~ 4- kr)-q-1 - -  2k~ ~ k -~ tee r (2k~ 4- kr)-l]-i  - -  2k~ �9 (4. 6) 

In the particular case of a two-phase mixture such that k 1 > k 2 we 

have 

;tcllcl @ c2 (ks -!- 2k~) 3c~ko @ cl (k~ @ 2kl) 
~%qk~ + ~: ( < - - _ ~  2&~ < ~ -.~ ~ ~ ' ~  ~ + ~ (e~ + 2<) . (4.7) 

For c t << 1, the two bounds in (4.7) coincide with the expression 
for the macroscopic thermal-conduct ivi ty  coefficient for a medium 
with spherical inclusions obtained in [3] (w Chapter XVI), under the 
assumption that the inclusions do not interact with each other in any 
way. Making use of the concept of a %pherical  composite e lement"  
[4], we see that each bound in (4.7) is an exact expression for the 
macroscopic thermal-conduct ivi ty  coeff ic ient  of a medium with spher- 
ical inclusions whose diameters vary from certain finite to vanishingly 
small  values. This proves the fact that bounds (4.6) are the best ones 
for a mixture  with the indicated structure. 

5. Now let  us consider the particular form of a mixture for which 
the phase domains are continuous cylinders with parallel generatrices 
and arbitrarily shaped cross sections. We assume that the mixture  as 
a whole is macroscopical ly homogeneous and transversely isotropic. 
We choose the coordinate axes x i in such a way that the xi-axis co-  
incides with the cylinder generatrices.  In these coordinates, the re- 
Iationship between (f)  and (r)  is of the form 

- -  < f l >  = k l l  < T I > ,  - -  <fi> = ka~<vi> ( i  = 2,  3). ( 5 . 1 )  

Here kit and k22 are the effective thermal-conduct ivi ty  coefficients 
parallel and perpendicular to the xi-axis  respectively. All of our pre- 
vious statements continue to hold in this case. The steady heat  flux 

along one of the xa- or Xs-aXes does not depend on x t and we have the 
plane analog of the problem considered above. The potential q~r is 
logarithmic,  

cp r (r) = - -  - ~  In I r - -  r" [ d S r ,  (5.2) 

8 r 

and its mean  value, (q)r , i j> m in Sin, is given by 

<~p,r@m = lhSrmSij (i, 1' = 2, 3). (5.3) 

The following bounds for k~2 are obtainable precisely as in the 
above case: 

- -  k~ ~ k~2 ~ [ E  Cr (ka 4- kr)-~]-l " ko:. (5.4) 

Since ~o r does not depend on x,, we have<'qr> = .qs = <.q>. Hence, 
the bounds for kl~ coincide, 

kn = ~ %k r .~ (5.5) 

All of the statements concerning bounds at the end of Section 4 
continue to hold in this case, provided the inclusions are rectil inear 
circular cylinders whose diameters range from certain finite to van- 
ishingly small values. 

6. In conclusion we note that the "self-consistent" model of a 
two-phase continuum proposed by Hill [5] can also be used in our case. 
In accordance with the basic postulate of Hill 's model,  the fields 
rr  and fr in Vr (r = 1, 2) are identifiable with the temperature gradient 
and thermal  flux in a single inclusion of the r - th  phase mater ia l  im- 
mersed in the unbounded medium,  with the required thermal -con-  
ductivity coefficient,  and under the appropriate boundary conditions 
at infinity. If the inclusion is of s imple geometric  shape ( e . g . ,  a 
sphere or a circular cylinder), the boundary-value problems are readily 
solvable [3] and the fields ~'r and fr in the inclusion turn out to be 
homogeneous.  

Let a two-phase mixture be macroscopical ly isotropic. The func- 

tional equation for determining k can be obtained on the basis of our 
previous analysis by identifying mater ia l  L 0 with the inhomogeneous 
medium itself. The thermal-conduct ivi ty  coefficient k can then be 
found as the positive root of the quad:at ic equation 

3elk (k 1 4- 2k) -r 4- 3c~k (k~ 4- 2k) -1 = i .  (6.1) 

In exactly the same way, we obtain the following equation for 
the coefficient kzz of the mixture  considered in Section 5: 

2cik22 (k 1 4- k22) -1 4- 2 c~k~2 (k~ 4 -  k~e) -1 = t .  ( 6 . 2 )  

It can be shown [5] that the values of k and k2a obtained from 
(6.1) and (6.2) always lie between bounds (4.7) and (5.4) for n = 2 
if k r > k 2 and can therefore serve as a good approximation in those 
cases where empir ical  interpolation between the bounds is, for any 

reason, difficult. 
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