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ABSTRACT: A mixture consisting of n homogeneous phases having
certain properties is considered. The geometry of the phase domains

is arbitrary and the mixture as a whole is considered to be statistically
homogeneous but generally anisotropic, Ideal conditions of thermal
contact (a continuous temperature and thermal flux) at the phase bound-
ary are assumed. A variational method is used to find both the upper
and lower bounds of the effective thermal-conductivity coefficients

of the mixture for given concentrations and the thermal-conductivity
coefficients of the individual phases.

1. Let us consider some volume V of a mixture bounded by the
surface S, Since the phases have different thermal conductivities, it
follows that, in the case of a steady thermal flux, the temperature
gradient fields 7 and the thermal flux vectors f are microscopically
inhomogeneous for any given temperature at S, The tensor K of the
macroscopic (effective) thermal-conductivity coefficients of the mix-
ture can be defined as follows:

—<f = K (v, (1.1)

where the angle brackets denote averaging over the volume, We also
agsume that the volume over which the mean values are calculated is
the “characteristic macroscopic volume" [1] of the mixture.

Let us suppose that the r-th phase with the tensor of heat-conduc-
tivity coefficients Kr occupies the volume Vy in the total volume V
of the multiphase medium. Further, let the temperature 6(S) be spec-
ified on S in such a way that

0(8) =11, (L.2)

Here x; are the Cartesian coordinates of the surface S; the 1} do
not depend on the coordinates. In this case ™ = <75 in the volume V
of the mixture, Let us denote, by 7*
continuous temperature field satisfying the boundary conditions on S
and, by £* the thermal-flux vector satisfying the equation div f* = 0,
For the boundary-value problem, without boundary condition (1,2),
we have the inequalities

2\ BRIV, <20V < vt av, . (1.3)
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These inequalities follow from the existence of the potentials

® =1, 1Ky, ¥ =1/, {RE
(—f; =00 /o7, —1;, =0V /d, R=K™

and from the posirive-definiteness of the matrices of coefficients K
and R. The symbol £ in inequalities (1, 3) denotes summation over
all r from 1 to n,
1
Dy =5 \ DV = <xy K<Tp, Rp= K, (1.4)
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2. As in the theory of elasticity [2], the above problem of de-
termining the mean gradient of the temperature field in the mixture
can be formulated asa problem forsome "comparison” material Lywith
arbitrarily chosen properties. It is convenient, at this point, to intro-
duce the "polarized” thermal~flux vector q by means of the formula

—f =Ko —q (2.1
Here K, is the tensor of the thermal-conductivity coefficients of
the material Ly, Since div f =0, the temperature field in the material
Lg is the same as one in the mixture, if heat sources of intensity div g
q act throughout the volume V in Ly, where q is defined by the relation
—q = (K — Ky)v (2.2)

Specifically, an appropriate heat~source layer must be introduced
at each discontinuity surface in the mixture; the intensity of this source

. the gradient which results from the

per unit area is derermined by the magnitude of the jump of the local
"source” q.

Let q* be an arbitrary polarized field which approximates the true
field. The gradient r* of the continuous remperature field satisfying
the conditions at S can be chosen in the form of the temperature gra-
dientinthe material Ly with distributed heat sources of intensity div
q* and with appropriate layers of sources on the discontinuity surfaces
of q*. The thermal-flux vector f* chosen in the form —f* = ;7% - q*
satisfies the equation div f* = 0. The resulting fields can be used in
inequalities (1. 3). However, the final result depends on the chosen
q*. Let us take q* in the form of a piecewise-homogeneous field which
assumes the constant value

—qF = (K, — Ko <1, 2.3)

in Vr.
Here <%,*) is the approximating field v* averaged over V;. The
vector f* now becomes

re

—P=K <t %Ki nV,, (2.4)

where 1,” = 1* — (1,*) is the deviation of the gradient 7* from the
average values in Vj.
Making use of the self-evident equation §§*(<ty — 1) dV =
¥

and expression (2. 4), we can reduce inequalities (1, 3) to
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We now define the divalent tensor H, associated with the approxi-
mate fields <1,%), as follows:
T* = H, <1, (Ze, H; T =8, 0, =1 [V}

(2.6)

Next, we define the tensor K* as the weighted mean tensor
K*=3c K H, . 2.1

Inequalities {2.5) now imply the following theorem: if the matrix
Ky — K, is positive-(negative-)definite for all r, the matrix K* — K
is positive-(negative-)definite,

3. Let us construct the approximating field %, The gradient *
comsists of the field 19 generated directly by the heat sources diswi-
buted in the material Ly and of the gradient 5 of the tempesature
field satisfying the boundary conditions at S, If Géi,i is the remper~
ature at the point r due to the source at the pointr', 9 is the gradient
of the temperature field

8% (r) :S G 9,1 dQ, +S g, V.
e} v
Here dQy, is an element of the discontinuity surface @, and ['qﬁ] is
the difference between the values of gy, on passage through the dis-
continuity surface Q. Transforming the surface integral into a volume
integral, we obtain

‘oG
d (o) — g E Y
8 ()= éaxk,qk dv.

Let the phases constituting the mixture be isotropic; i.e., let
KEJ- = kpdij. If material Ly is homogeneous and isouropie,
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In this case,

% s 1 T, r H
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Here qlr( denotes the constant value which the vector qk assumes
in Vi,
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(V' =38,,, inside V ). (3.2)
The gradient 75 is homogeneous by virtue of the special boundary
conditions (1.2) and must be determined later.
4. Let the mixture be statistically isotropic; i.e., let Kyjj = kij.
In this case, the mean value <g,;;">m of the guantity c,o{j over the .
volume V., must be an isotropic divalent tensor, which, with allow-
ance for (8.2), can be written as

<@ 355 =0, 1055 (4.1)

Averaging expression (3.1) over the volume of each phase V; and
recalling (4.1) and (2.3), we obtain n equations for determining

1 1
<Tr*>:mqr+‘rs=§7{£(kr—_k0) <‘I7r*‘>—f—1?s. (4 2)

Solving (4.2) for <7,*), we obtain

(4.3)

k. S — s —_—
<rr>~art, a, = k,-l-Zko'

Substituting (4.3) into the relation <ty = 3 ¢, <T,*, we obtain 7%,

1° = (Ze,a,) (T (4.4)

Determining H; from (4.3), (4.4), and (2.6), we finally obtain
the following equation from (2.7):

k¥ =Z¢ ka (Zca ) (4.9)

The bounds for k can be determined as follows. Let the largest and
smallest of the phase thermal-conductivity coefficients kr be kg, and
kg. Then, in accordance with the theorem of Section 2, the best upper
bound is obtainable by setting kg = ky and the best lower bound is
obtainable by setting ky = kg. The bounds for k can be expressed as

[Ze, (kg + k)71 — 2k, B < [e, (2 + b — 2k, - (4.6)
In the particular case of a two-phase mixture such thatk; > ky we

have

_ etk -+ ¢a (kg -+ 2kg) i 3egks + €1 (ks 4 2k1)
23 ekg - ca (ky 4 2he) TN M Beoky - ¢y (ke + 2k1)

(4.7

For ¢; < 1, the two bounds in (4.7) coincide with the expression
for the macroscopic thermal~conductivity coefficient for a medium
with spherical inclusions obtained in [3} (§4, Chapter XVI), under the
assumption that the inclusions do not interact with each other in any
way. Making use of the concept of a "spherical composite element”
[4], we see that each bound in (4,7) is an exact expression for the
macroscopic thermal-conductivity coefficient of a medium with spher-
ical inclusions whose diameters vary from certain finite to vanishingly
small values, This proves the fact that bounds (4.6) are the best ones
for a mixture with the indicated structure.

5. Now let us consider the particular form of a mixture for which
the phase domains are continuous cylinders with parallel generatrices
and arbitrarily shaped cross sections. We assume that the mixture as
a whole is macroscopically homogeneous and transversely isotropic.
We choose the coordinate axes x; in such a way that the x;-axis co-
incides with the cylinder generatrices. In these coordinates, the re-
lationship between (f) and (7) is of the form

— <fp) = Ky <7y, — Ly = kpedTyd (i=2,3). (5.1)

Here ky; and kyy are the effective thermal-conductivity coefficients
parallel and perpendicular to the x;-axis respectively. All of our pre-
vious statements continue to hold in this case. The steady heat flux
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along one of the x,- or xz~axes does not depend on x; and we have the
plane analog of the problem considered above. The potential ¢! is
logarithmic,

M
Q’T(l‘)=—-'2—n‘31n[r——r’]dsr, (5.2)

8,

and its mean value, <(g7;;5m IR Sm, is given by

@i =1008,,0,5 (1, 7=23). (5.3)

The following bounds for ko, are obtainable precisely as in the
above case:

[2 ¢, (kg + Icr)‘l]_l -

— by <Fm < [Z o, (ki + kr)‘l]-l — k. (5.4)

Since o' does not depend on x;, we have{t;"> = t1,° = <1;>. Hence,
the bounds for ky; coincide,

b= Dek . (5.5)

All of the statements concerning bounds at the end of Section 4
continue to hold in this case, provided the inclusions are rectilinear
circular cylinders whose diameters range from certain finite to van-
ishingly small values.

6. In conclusion we note that the "self-consistent” model of a
two-phase continuum proposed by Hill [5] can also be used in our case.
In accordance with the basic postulate of Hill's model, the fields
7p and f; in Vy (r = 1, 2) are identifiable with the temperature gradient
and thermal flux in a single inclusion of the r-th phase material im-~
mersed in the unbounded medium, with the required thermal-con-
ductivirty coefficient, and under the appropriate boundary conditions
at infinity. If the inclusion is of simple geometric shape (e.g., a
sphere or a circular cylinder), the boundary-value problems are readily
solvable [3] and the fields 1, and f; in the inclusion turn out to be
homogeneous,

Let a two-phase mixture be macroscopically isotropic. The func-
tional equation for determining k can be obtained on the basis of our
previous analysis by identifying material Ly with the inhomogeneous
medium: itself, The thermal-conductivity coefficient k can then be
found as the positive root of the quad:atic equation

ek (kg + 2K) ) + Begh (by - 20 = 1. (6.1)

In exactly the same way, we obtain the following equation for
the coefficient ky, of the mixture considered in Section 5:

Qerkys (g + Kpo)™ + 2 caftgs (B 4 Fa)t = 1. (6.2)

It can be shown [5] that the values of k and ky, obtained from
(6.1) and (6.2) always lie between bounds (4.7) and (5.4) forn =2
if k; > k, and can therefore serve as a good approximation in those
cases where empirical interpolation between the bounds is, for any
reason, difficult,
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